

Berufsschule, Elektroniker/-in FR Energie und Gebäudetechnik, 3. Ausbildungsjahr

Beispielkonzept für das Lernfeld 10

Ausbildungsberuf	Elektroniker Fachrichtung Energie- und Gebäudetechnik
Fach	System- und Gerätetechnik
Lernfeld	LF 10: Elektrische Geräte und Anlagen der Haustechnik planen, in Betrieb nehmen und übergeben
Lernsituation	Lernsituation 2: Eine E-Patrone für die Speicherung von überschüssiger Energie nach vorgegebenen Kriterien auswählen, installieren und in Betrieb nehmen.
Zeitrahmen	Circa 18 Unterrichtsstunden
Benötigtes Material	(digitale)Tafel, Computer für jeden Schüler*innen, Projektionstechnik, Informationsblätter, Texverarbeitungs-Programme,(Online) Wörterbücher in englischer Sprache, realer Aufbau(ideal): Wechselrichter, Steuergerät, E-Patrone, Smart-Meter
Querverweise	

Berufsschule, Elektroniker/-in FR Energie und Gebäudetechnik, 3. Ausbildungsjahr

Konzeptionsmatrix für die Lernsituation 2

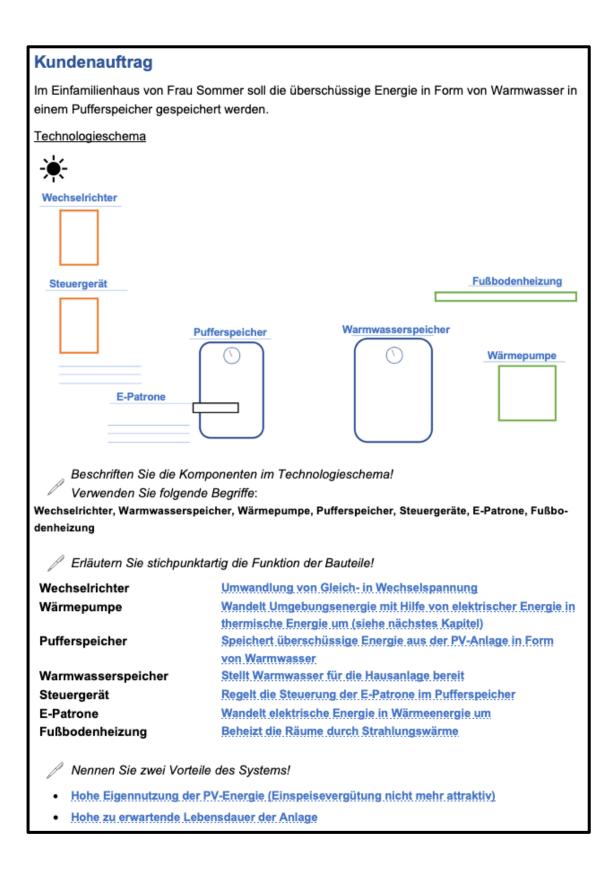
_	otionsmatrix nsituation 2	speicher geleitet. ersparnis. Sie wä installieren die E-l	Die Schüler*innen hlen auf Grundlage	ermitteln rechno e ihrer Berechno dung mit einem	erisch die zu speid ungen die passend Steuergerät nach I	chernde möglich de E-Patrone a DIN-VDE. Nach	se über eine E-Patro he Energiemenge ur us, konzipieren den n der Inbetriebnahme n.	nd somit die Kosten- Leitungsschutz und
Zeit	Thema/	Sachwissen	Prozesswissen	Reflexions-	Aufgabe			
in min	Beschreibung			wissen		1	1	
					Aktivitäten	Lernprodukte	Medien/	Kontroll- und
) A / !!			1 6 6 71 71		Materialien	Reflexionselemente
2	Vorstellung der Lernsitua-	Wärmepumpe Arten und Funkti-		Jahresarbeits-	Information über die	e geplante Kunder	naniage	
	tion; Wärme-	onsweise		zahl	Verschaffen sich	Ausgefülltes	Skript	Aufgabe-Skript
	pumpe				mit Hilfe der Prä-	Technolo-		Information über Wär-
					sentation einen	gieschema	<u>Material</u>	mepumpe (Infotext
					Überblick über die	Fragen zur	Herstellerunterlagen	mit Fragen)
					betriebliche Situa-	Wärmepumpe		
					tion.		<u>Präsentation</u>	
					Benennen ein-		Anfrage von Kunden	
					zelne Komponen-		(E-Mail)	
					ten und deren			
					Aufgabe.			
					Nennen Vorteile			
					des Speichersys-			
				1	tems			

3	Einsatzmög-	Warmwassergeräte			Information über Wa	armwassergeräte		
	lichkeiten von Warmwasser- geräte	Durchlauferhitzer, Warmwasserspei- cher, Kochendwas- sergeräte, Boiler und E-Patrone Sicherheitsbestim- mung Lastabwurfrelais			Informieren sich im Team mit Hilfe der Fachliteratur über Warmwassergeräte. Tragen Einsatzmöglichkeiten, Vor- und Nachteile der einzelnen System zusammen.	Übersicht über Warmwasser- geräte (Arten, Speichermög- lichkeit, Arma- turen, Leistun- gen, Tempera- turen, Einsatz- bereich, Funk- tion)	Skript Medien Tabellen- bzw. Fachkundebuch Datenblätter	Aufgabe-Skript Erläutern die Notwendigkeit einer Opferanode
5	Wärmeenergie im Pufferspei- cher	Warmwassertechnische Größen	Ziehen Datenblätter, Stromlaufpläne und Herstellerunterlagen für die Durchführung heran	Berechnung der Aufladezeit in Abhängigkeiten von der elektri- schen Leistung.	Berechnung der zu Verschaffen sich mittels der Fachli- teratur einen Überblick über Warmwassergrö- ßen. Vollziehen den Rechenweg an- hand von einer Beispielaufgabe nach. Berechnen eigen- händig einfache Aufgaben auch unter Verwendung	speichernden Wä Wärmeenergie des 500 Liter Pufferspei- chers Übungsaufga- ben auf Teil 2 - Niveau	Skript Medien Tabellen- bzw. Fachkundebuch Datenblätter	cher Aufgabe-Skript Übungsaufgaben (siehe auch Teil 2 Prüfung)

					von Datenblättern und Herstellerun- terlagen. Beziehen den Wärmewirkungs- grad in die Be- rechnungen mit ein			
3	Auswahl der passenden Komponenten	Anschluss von Teil- komponenten an wasser-, abwasser- und luftführende Rohrleitungssys- teme E-Patrone	Suchen eine passende E-Patrone für ein Warmwassersystem heraus. Wählen den passenden Leitungsund Fehlerstromschutz, und den Montageort unter Berücksichtigung der Kundenwünsche aus Stimmen sich gegebenenfalls mit anderen Gewerken (Heizungsbauer) über moderne Medien ab.	Zollsystem Berechnung der Aufladezeit in Abhängigkeiten von der elektri- schen Leistung Leitungsschutz und Fehlerstro- meinrichtung	Auswahl der E-Patrzes Holen sich Datenblätter von verschiedenen E-Patronen aus dem Internet. Berechnen die Aufladezeit und entscheiden sich im Team für eine E-Patronen. Stimmen sich ggf. mit dem Heizungsbauer über den Einbau (Zollsystem) ab. Wählen eine passende Ansteuerung der E-Patrone aus (z.B. OhmPilot).	Technologie- Schema mit Herstellerinfor- mationen Ggf. E-Mail an Heizungs- bauer	Skript Medien Tabellen- bzw. Fachkundebuch Datenblätter Taschenrechner Homepage von Herstellern	und Fehlerstromschut- Aufgabe-Skript

2	Kostenerspar-	Warmwassertechni-	Energiekosten	Verstehen den Aufladeprozess (Herstellerunterlagen) Tragen die Herstellerinformationen in das Technologieschemaein.	etanerenarrie		
	nis	sche Größen	für Warmwasser	Recherchieren im Team die durch- schnittliche Ener- giemenge für den Haushalt des Kun- den (Energiebera- ter), die Vergü- tung für die Ener- gie aus der Photo- voltaikanlage so- wie den aktuellen Stromtarif. Stellen die Formel für die Berech- nung der Kosten für die elektrische Arbeit auf. Berechnen die Kostenersparnis	Kostenerspar- nis für eine Aufladung des Pufferspei- chers	Medien Tabellen- bzw. Fachkundebuch Datenblätter Taschenrechner Internet	Aufgabe-Skript Übungsaufgaben zu Kosten der elektri- schen Arbeit in Ver- bindung mit Warm- wassererzeugung (siehe aus Teil 2 Prü- fung) Aufladeszenarien mit verschiedenen Tem- peraturen

1,5		Erstellen einen Ar-		Erstellung eines Arb	peitsplans		
		beitsplan für die Installation einer E-Patrone bzw. eines Überspannungsableiters.		Machen sich im Team Gedanken über die Umset- zung des Spei- chersystems Tragen in tabella- rischer Form die einzelnen Arbeits- schritte zusam- men. Werten Hersteller- unterlagen aus. Geben auch die benötigte Arbeits- zeit mit an.	Tabellarischer Arbeitsplan mit Zeitangaben	Skript Arbeitsplan	Bewerten die ver- schiedenen Arbeits- pläne hinsichtlich ih- rer Sinnhaftigkeit und Umsetzung Erstellen ggf. eine Materialliste
2	Normen und Vor- schriften zum An- schluss von elektri- schen Geräten an Rohrsysteme DIN VDE 0100	Führen die geforderte DIN-VDE-Messung durch und erstellen ein Prüfprotokoll.	Vorgehen bei Schutzleiter- und Isolationswi- derstandsmes- sung und bei der Messung der Berührungs- stromstärke	Inbetriebnahme der Werten die Herstellerunterlagen des Steuergerätes aus. Listen die durchzuführenden Schritten auf. Führen an einem Stand exemplarische für die Situation die Messungen dessungen.	Anlage nach DIN- Ausgefülltes Prüfprotokoll	Skript Prüfprotokoll Medien Herstellerunterlagen Tabellen- und Fachkundebuch	Nennen mögliche Fehlerursachen, wenn der Wert nicht passt.



2	Vundanfa adha ak	Zählen Erweite-	Energicoffizione	Zeigen die Konfi- gurationsschritte bei der Inbetrieb- nahme des Steu- ergerätes auf. Bewerten die Pa- rameter.			
2	Erweiterungsmög- lichkeiten von Anla- gen Elektrische Spei- chersystem	rungsmöglichkeiten wie z.B. elektrische Speichersysteme in Verbindung mit ei- nem E-Auto auf	Energieeffizienz, Wirkungsgrad Speichersys- teme, Wall-Box KfW-Förderung für z.B. PV-An- lage, Vergütung für PV-Energie	Übergabe der Anlag Bereiten sich mit Hilfe einer Check- liste auf die Ein- weisung. Informieren sich in diesem Zusam- menhang über Er- weiterungsmög- lichkeiten, KfW- Förderungen usw. Beachten bei der Einweisung die Grundregeln der Gesprächsfüh- rung. Erstellen Items für ein Kundenfeed- back	Einweisung des Kunden in die Anlage Holen sich z.B. über einen Fragebogen Kundenfeed- back ein. Weisen auf mögliche Er- weiterungs- möglichkeiten und Förderun- gen hin.	Skript Checkliste Medien Tabellen- bzw. Fachkundebuch Datenblätter Technische Unterlagen Hersteller-Homepage, KfW-Homepage	Weisen auf mögliche Fehlbedienungen hin. Aufbewahrung von technischen Unterla- gen.

Berufsschule, Elektroniker/-in FR Energie und Gebäudetechnik, 3. Ausbildungsjahr

Unterlagen, Medien, Materialien

W	ärmepumpe
Le <u>niu</u> du kie Be	peitsauftrag: sen Sie die Seiten 1-30 des Informationstexts (hinterlegt in TEAMS oder https://www.e-ge-ss.at/lernfelder/erneuerbare-energien/grundlagen-waermepumpen/einleitung) aufmerksam rch! Laden Sie diesen evtl. in Ihr eigens Notizbuch um wichtige Passagen und Begriffe zu marren! antworten Sie mit Ihren eigenen Worten folgende Fragen! Verwenden Sie, wo es sinnvoll ist, nze Sätze!
W	ärmepumpe – Fragen
1.	Welche Wärmequellen gibt es in der direkten Umgebung eines Gebäudes? Holz, Fossile Brennstoffe, Sonnenenergie, Windenergie, Geothermie (Grundwasser, Erdwärme), thermische Energie der Außenluft, thermische Energie der Abluft (Lüftungsanlage)
2.	Was ist die grundlegende Funktion einer Wärmequelle? Die Wärmequelle stellt für den thermischen Kreislauf die Wärme durch ein bestimmtes Temperaturniveau zur Verfügung!
3.	Welche Wärmequellen können für eine Wärmepumpe genutzt werden? Außenluft, Erdwärme, Grundwasser, Abwärme
4.	Welchen Zweck erfüllt die Wärmequellenanlage als Komponente einer Wärmepumpenheizungsanlage?
	Mit Hilfe der Wärmequellenanlage wird thermische Energie aus der Wärmequelle entzogen und mit Hilfe des Wärmeträgers (z.B. Luft) zur Wärmepumpe transportiert.
5.	Beschreiben Sie das Funktionsprinzip einer Kompressionswärmepumpe! Die Funktion einer Wärmepumpe kann im Allgemeinen mit der eines Kühlschrankes verglichen
	werden. Das Kältemittel verdampft auf der kalten Seite (z.B. im Außenbereich) und nimmt dadurch Verdampfungswärme auf. Nachdem das Kältemittel verdichtet wurde, erwärmt es sich stark und gibt im Kondensator die Wärme an das Heizsystem ab. Ein Drosselorgan sorgt für den Anfangsdruck. Dadurch kühlt das Kältemittel wieder ab und der Prozess geht wieder von vorne

- 6. Nennen Sie die Hauptkomponenten einer Wärmepumpe!
 - Verdampfer
 - Kompressor (Verdichter)
 - Kondensator (Verflüssiger)
 - Drossel (Expansionsventil)
 - Kältemittel (Arbeitsmittel)

Berufsschule, Elektroniker/-in FR Energie und Gebäudetechnik, 3. Ausbildungsjahr

7. Erläutern Sie die Aufgabe des Kondensators?

Der Kondensator überträgt die thermische Energie (Wärme) des Arbeitsmittels auf das Heizmedium (z.B. Wasser). Meist werden hartgelötete oder verschweißte Plattenwärmeübertrager eingesetzt.

8. Welche Funktion hat der Kompressor?

Der Kompressor bzw. Verdichter bringt das Kältemittel auf einen höheren Druck. Dabei wird die Temperatur des Kältemittels erhöht. Man unterscheidet zwischen vollhermetischen und halbhermetischen Verdichter.

- 9. Nennen Sie einige Anforderungen an Kältemittel für eine Wärmepumpe!
 - umweltfreundlich
 - große Wärmemenge bei geringer Masse transportieren (volumetrische Kälteleistung)
 - ungiftig
 - nicht brennbar
 - einfache Handhabe
 - · geringes Treibhauspotential
- 10. Vergleichen Sie die Wärmequelle Außenluft und Erdwärme in Hinblick auf ihren Nutzen für eine Wärmepumpe!

Außenluft	Erdwärme
Effizient, wenn guter Dämmstandard vor-	Hohe Leistungszahl
handen ist	
Kostengünstig	Kostenintensiv
Ungünstig bei großen Temperaturunter-	Fast konstante Temperatur der Wärme-
schieden; d.h. Temperatur der Wärme-	quelle
quelle variiert stark	
Außenaufstellung wirkt sich auf Prozess	Hoher Platzbedarf
aus	
Geräuschentwicklung	Teilweise Genehmigung erforderlich

11. Welche Voraussetzungen müssen für die Erschließung und Nutzung von Grundwasser für eine Wärmepumpe gegeben sein?

Es muss eine wasserrechtliche Bewilligung vorliegen. Darüber hinaus sind Maßnahmen über die Materialauswahl der Wärmeübertragung entsprechend der Wasserqualität erforderlich.

12. Wieso ist die Berechnung der Heizlast für die Planung einer Wärmepumpe wichtig?

Überdimensionierte Wärmepumpen verursachen unverhältnismäßig hohe Installationskosten und verkürzen durch häufiges Takten die Lebensdauer der Anlage!

13. Welches Wärmeabgabesystem ist für das Heizen mit Wärmepumpe zu empfehlen?

Für das Wärmeabgabesystem in Verbindung mit einer Wärmepumpe bietet sich eine Fußbodenheizung bzw. Wandheizung an.

Berufsschule, Elektroniker/-in FR Energie und Gebäudetechnik, 3. Ausbildungsjahr

Warmwassergeräte

P

Informieren Sie sich im Partnerpuzzle mit Expertenrunde über folgende Warmwassergeräte! Füllen Sie soweit es geht das Arbeitsblatt aus!

Durchlauferhitzer, Warmwasserspeicher

Durchlauferhitzer

Ein Durchlauferhitzer ist ein fest installiertes Gerät zur Warmwasserbereitung. Im Gegensatz zum Boiler, der in einem Vorratsbehälter eine begrenzte Warmwassermenge bereitstellt, erwärmt ein Durchlauferhitzer das Wasser erst dann, wenn ein Wasserhahn geöffnet wird. Durch die hohe Wärmeleistung (3,5 bis 27 kW) kann ein Durchlauferhitzer kontinuierlich warmes Wasser erzeugen. Durchlauferhitzer werden meistens für die dezentrale Warmwasserversorgung (z.B. im Badezimmer, weniger häufig in der Küche) eingesetzt. Sie eignen sich nicht zur Bereitung von kochendem Wasser.

Der Durchlauferhitzer erwärmt im Gegensatz zum Warmwasserspeicher das Wasser erst, wenn es benötigt wird (direkt während des Durchflusses).

Steuerungsarten

hydraulisch

Beim hydraulisch gesteuerten Durchlauferhitzer wird die Erwärmung des Wassers durch den Strömungsschalter gesteuert. Bei Wasserentnahme verändert sich der Druck im geschlossenen Wasserbehälter. Entsprechend dieser Änderung werden Heizkreise zugeschaltet.

Heizblock

elektronisch

Beim elektronisch gesteuerten Durchlauferhitzer werden von einer Elektronik, die Anfangs- und Endtemperatur, sowie der Durchfluss gemessen. Die Auswertung dieser Messwerte steuert das Heizsystem. Meldet der Sicherheits-Temperaturbegrenzer einen zu hohen Wert, so wird der Durchlauferhitzer

Blankdraht - Fernbedienung messung
Heizsystem oder EIB

Bugruppe

Burchflussmengenbegrenzung

Temperaturfühler

Sicherheits - Temperaturbegrenzer

Bedienteil

Durchfluss-

abgeschaltet.

Berufsschule, Elektroniker/-in FR Energie und Gebäudetechnik, 3. Ausbildungsjahr

Vorteile und Nachteile des Durchlauferhitzers

Vorteile:

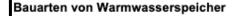
- hygienischer (Wasser wird sofort verbraucht)
- Warmwasser steht sofort zur Verfügung
- guter Wirkungsgrad, nahe an 100 %
- keine Verluste durch Abkühlung von nicht benötigten Wasser
- benötigt wenig Platz, da er keine Isolierung hat

Nachteile:

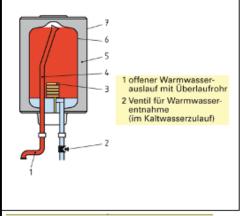
- hoher Anschlusswert → hoher Querschnitt muss vorhanden sein
- Zustimmung des VNB ist nötig
- Stoßbelastung des Netzes beim Betrieb

Warmwassergeräte: Der Warmwasserspeicher

Ein Warmwasserspeicher, Heißwasserspeicher etc., oft auch nur kurz Speicher bezeichnet im Haushalt ein fest installiertes Gerät zur Erzeugung von warmem/heißem Wasser (einstellbar bis fast 100 °C). Speicher sind ständig gefüllt, werden durchgehend beheizt und sind wärmegedämmt.


Achtung: Boiler bezeichnet Geräte, die für den Augenblick der Heißwasserentnahme befüllt und beheizt werden und deshalb nicht wärmegedämmt sind.

Im elektrisch beheizten Warmwasserspeicher befindet sich ein elektrisches Heizelement. Es besteht aus einem Heizleiter in einem schützenden, korrosionsbeständigen Metallrohr. Neben dem Heizelement befindet sich das Fühlrohr eines temperaturgesteuerten Schalters zur Temperaturregelung. Dessen Sollwert kann mit einem Drehknopf verstellt werden. Temperatursensor und Heizelement befinden sich in einem Gefäß aus Kupfer, Kunststoff oder – bei Druckboilern – aus Edelstahlblech, aus verzinktem Stahlblech oder aus emailliertem Stahlblech. Das kalte Leitungswasser wird unten in das Gefäß eingeleitet; das heiße Wasser wird im oberen Bereich des Gefäßes entnommen. Das ist erforderlich, da sich das warme Wasser aufgrund seines geringeren spezifischen Gewichtes immer oben sammelt und dort entnommen werden kann.


Berufsschule, Elektroniker/-in FR Energie und Gebäudetechnik, 3. Ausbildungsjahr

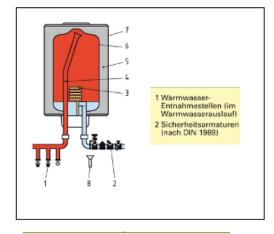
Es gibt zwei grundlegend verschiedene Warmwasserspeicher-Bauarten:

offener

Warmwasserspeicher

4 Überlaufrohr 5 Wärmedämmung 8 Auffangtrichter

Innenbehälter steht nicht unter Druck →man kann nur eine Zapfstelle versorgen


Überlaufrohr für das sich ausdehnende

Wasser

Funktion:

- 1. Öffnen des Ventils im Kaltwasserzulauf
- 2. Kaltes Wasser strömt in den Behälter
- 3. Warmes Wasser wird durch das Ablaufrohr gedrückt.

Warmwasserspeicher

3 Heizkörper

4 Überlaufrohr 7 Außengehäuse

5 Wärmedämmung 8 Auffangtrichter

unter Innenbehälter steht

→man kann <u>mehrere</u> Zapfstelle versorgen

Falls Wasserdruck > 5 bar

→ Druckminderer nötig

Funktion:

- 1. Öffnen des Ventils im Warmwasserzulauf
- 2. Warmes Wasser fließt durch das Ablaufrohr
- Kaltes Wasser fließt in den Behälter nach

Installation eines Warmwasserspeichers

meist an Schutzkontaktsteckdosen 230 V bis 2kW:

fest verlegte DS-Leitung 400 V mehr als 4,6 kW:

nur Installation beim VNB anmelden, erst ab 12 kW:

mit Genehmigung anschließen

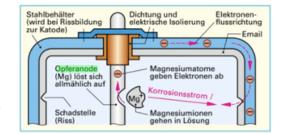
Wichtig:

Das Gerät vollständig mit Wasser befüllen und dann erst an Spannung legen!

Berufsschule, Elektroniker/-in FR Energie und Gebäudetechnik, 3. Ausbildungsjahr

Opferanode

Erläutern Sie die Notwendigkeit einer Opferanode im Warmwasserspeicher!


Eine Opferanode wird verwendet, um die Folgen der Kontaktkorrosion im Warmwasserspeicher zu verhindern. Dies gewährleistet eine längere Lebensdauer des Speichers.

Lesen Sie im Fachkundebuch die entsprechende Seite und beantworten Sie die Fragen!

 Aus welchem Material besteht die Opferanode in der Darstellung?

Die Opferanode besteht aus Magnesium.

Erläutern Sie, warum die Opferanode nach einer bestimmten Zeit erneuert werden muss!

Bilden sich Risse im Email, so kann ein Korrosionsstrom fließen. Die positiv geladenen Magnesiumionen wandern von der Elektrode zur zur Schadstelle (Katode) und füllen diese aus. Durch diesen Prozess wird die Opferanode nach und nach aufgebraucht und muss bei Zeiten gewechselt werden!

3. Übersetzen Sie das Fremdwort Korrosion!

Korrosion bedeutet Zerstörung, Zersetzung

Berufsschule, Elektroniker/-in FR Energie und Gebäudetechnik, 3. Ausbildungsjahr

Wärmeenergie im Pufferspeicher

P

Berechnen Sie mit den angegebenen Daten die Wärmeenergie im Pufferspeicher!

Daten

PV-Anlagenleistung: 9 kWp

Leistung E-Patrone: siehe Auswahl Datenblatt

Füllmenge Pufferspeicher: 500 Liter

Zieltemperatur: 55 °C

Ausgangstemperatur: 18 °C

Pufferspeicher

Ansatz

$$Q = W_{el}$$

$$m \cdot c \cdot \Delta \vartheta = P \cdot t$$

$$\Delta \vartheta = \vartheta_2 - \vartheta_1$$

m = Masse in kg

c = spezifische Wärmkapazität in $\frac{kJ}{K \cdot Kg} = \frac{Kilo-Joule}{Kelvin \cdot Kilogramm}$

Δθ = Temperaturunterschied in K

ϑ₁ = Anfangstemperatur in °C

θ₂ = Endtemperatur in °C

P = Leistung in W

t = Aufheizzeit in Sekunden s

Werkstoff	c in kJ
Aluminium	0,94
Eisen	0,47
Kupfer, Messing	0,39
Silber	0,23
Polyvinylchlorid	0.88
Maschinenöl	1,67
Wasser	4,19

Abbildung 1: Tabellenbuch Europaverlag

Berechnung der gespeicherten Wärmeenergie

Geg.: $m = 500 \ kg$; $c = 4,19 \ \frac{kJ}{R \cdot Kg}$; $\vartheta_1 = 18 \ ^{\circ}C$; $\vartheta_2 = 55 \ ^{\circ}C$

Ges.: Q in kWh

Lös.: Ausgangsformel: $Q = m \cdot c \cdot \Delta \vartheta$

Einsetzen: $Q = 500 \ kg \cdot 4,19 \ \frac{kJ}{K \cdot Kg} \cdot 37 \ K = 77515 \ kJ = 77515 \ kWs = 21,53 \ kWh$

Der Pufferspeicher kann eine Wärmeenergie von 21,53 kWh¹ speichern.

Die Einheit kWh ist für Elektroniker greifbarer als die Einheit Joule.

Berufsschule, Elektroniker/-in FR Energie und Gebäudetechnik, 3. Ausbildungsjahr

Wärmenutzungsgrad

Der Wärmenutzungsgrad setzt die eingesetzte elektrische Energie ins Verhältnis mit der genutzten Wärmeenergie (Nutzwärme):

$$\zeta = rac{Q_{th}}{W_{el}}$$
 = Wärmewirkungsgrad ["zeta"]

Übungsaufgabe

siehe z.B. Europa-Rechenbuch und abgewandelte Teil 2 Aufgaben zum Thema

Berufsschule, Elektroniker/-in FR Energie und Gebäudetechnik, 3. Ausbildungsjahr

Datenblätter

E-Patrone

ASKOHEAT-S

012-3701

AHR-B-S-... AHR-H-S-...

Einschraub-Heizkörper

mit Temperaturregler/-begrenzer Kombination und Betriebslampe

nach (EN 60 730-1 /-2-9)

Anwendung Merkmale

Zur Erwärmung von Brauch- und Heizungswasser

EHK Der Heizkörper besteht aus drei U-förmigen Rohr-Heizkörpern, die in einem Messingnippel 1 ½ " eingelötet sind

Die unbeheizte Zone beträgt bei allen Leistungen 150 mm

TR Elektromechanischer Temperaturregler nach DIN 3440, nicht bruchsicher

STB Elektromechanischer Temperaturbegrenzer nach DIN 3440, bruchsicher, bei Überschreiten der Ausschalttemperatur schaltet das Schaltwerk AUS und bleibt in dieser Stellung verriegelt. Entriegeln erfolgt manuell nach Abkühlung des Fühlrohrs um ca. 10K

Zeitkonstante des Fühlrohrs nach DIN3440

Wirkungsweise TR: Typ 2 B

Wirkungsweise STB: Typ 2 BK nach (EN 60 730-1 /-2-9)

Gerätetypen:

Тур	Bestell-Nr.	Leistung	Volt	Eintauchtiefe
AHFOR-BI-OP-2.0	012-5601	2000 W	400 V	260 mm
AHFOR-BI-OP-2.5	012-5602	2500 W	400 V	310 mm
AHFOR-BI-OP-4.0	012-5603	4000 W	400 V	260 mm
AHFOR-BI-OP-5.0	012-5604	5000 W	400 V	300 mm
AHFOR-BI-OP-6.0	012-5605	6000 W	400 V	360 mm
AHFOR-BI-OP-7.5	012-5606	7500 W	400 V	420 mm
AHFOR-BI-OP-8.0	012-5607	8000 W	400 V	450 mm
AHFOR-BI-OP-9.0	012-5608	9000 W	400 V	490 mm

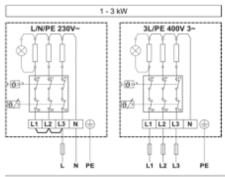
Berufsschule, Elektroniker/-in FR Energie und Gebäudetechnik, 3. Ausbildungsjahr

Elektroschema

ASKOHEAT-s

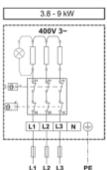
Einschraubheizkörper R 11/2" + 2"

Elektroschema



ACHTUNG!

Vor dem Zugang der Anschlussklemmen müssen alle Versorgungsstromkreise abgeschaltet werden.


1.0 bis 9.0 kW (Typ A)

- AHR-B-S-...
- AHR-H-S-...

Betriebsspannungen:

- L/N 230 V ~ (1.0 3.0 kW)
- » Bei 230 V[∼] die Brücke L1-L2-L3 einsetzen!
- L1/L2/L3 400 V 3~ (1.0 3.0 kW)
- Bei 400 V~ darf der Neutralleiter (Sternpunkt) nicht angeschlossen werden!
- Die Vorschriften der örtlichen Stromanbieter müssen eingehalten werden!

Betriebsspannungen:

- L1/L2/L3 400 V 3~ (3.8 9.0 kW)
- » Die Vorschriften der örtlichen Stromanbieter müssen eingehalten werden!

Berufsschule, Elektroniker/-in FR Energie und Gebäudetechnik, 3. Ausbildungsjahr

Hinweis zum Unterricht

Den Schüler*innen soll in dieser Lernsituation die Speicherung von überschüssiger PV-Energie und zwar nicht mittels eines Elektrospeichers, sondern mit Hilfe eines Pufferspeichers verdeutlicht werden. Hierzu bietet der Markt verschiedene System an, was das Arbeiten mit Datenblättern und Herstellerunterlagen für das Vertändnis der Thematik unverzichtbar macht. Die angehängten Arbeitsblätter verdeutlichen eine mögliche praktische Umsetzung der ersten Aufgaben aus der Konzeptionsmatrix.

Eine Orientierungshilfe in Bezug auf die Eintauchtiefe in den Inhalt könnte zusätzlich zu diesen Ausführungen jüngere Teil 2 Prüfungen anbieten.

Quellen- und Literaturangaben

Fachliteratur

Fachkunde- und Tabellenbuch Europa-Verlag
Fachkundebuch Westermann-Verlag

Internet

https://www.heiz24.de/mediafiles/pdf2/97 021 76--DBL-01-de.pdf am 01.09.2021 um 12:30 Uhr https://www.heiz24.de/mediafiles/pdf2/97_021_76--DBL-02-de.pdf am 01.09.2021 um 12:30 Uhr