

Berufsschule, Informationselektroniker/-in, 2. Ausbildungsjahr

LF 8: Einen LwL-Anschluss des PC-Labors an den Serverraum mit USV planen und umsetzen.

Ausbildungsberuf	Informationselektroniker/-in
Fach	IT-Systeme
Lernfeld	LF 8: Vernetzte Systeme installieren, erweitern und administrieren
Lernsituation	Lernsituation 2:
	Einen LwL-Anschluss des PC-Labors an den Serverraum mit USV planen und umsetzen.
Zeitrahmen	15 Unterrichtsstunden
Benötigtes Material	Digitales Endgerät, Projektionstechnik, LwL-Patchfelder, LwL-Stecker, 900 µm-LwL-Kabel, Werkzeug, Rotlichtquelle, LwL-Powermeter
Querverweise	

Hinweis:

Die Lösungen lassen sich durch Ein- und Ausschalten der Steuerzeichen ein- und ausblenden!!

Drucken der Lösung: Datei -> Optionen -> Anzeige -> Ausgeblendeten Text drucken

Berufsschule, Informationselektroniker/-in, 2. Ausbildungsjahr

Konzeptionsmatrix für die Lernsituation 1

	eptionsmatrix ernsituation 2	werden beauftragt, \	ufgrund einer größeren Umbaumaßnahme an der Schule muss der LWL-Uplink eines Klassenzimmers neu verlegt werden. Die SuS verden beauftragt, Vergleichsangebote zu verschiedenen LWL-Typen und einer defekten USV zu erstellen. Im Anschluss erhalten die SuS en Auftrag, die LWL-Verbindung exemplarisch zu verlegen und eine Abnahmemessung (Pegelmessung) durchzuführen.						
Zeit Thema/	Sachwissen	Prozesswissen	Reflexions-	Aufgabe	Aufgabe				
	Beschreibung			wissen	Aktivitäten	Lernprodukte	Medien/ Materialien	Kontroll- und Reflexionselemente	
135	Kundenwunsch	Kundenberatung: Gesprächsinformation	Auftragsorganisati on:	Kundenberatu ng:	Erstellung eines Angebots für den Kunden				
	und Angebot	en Vorgehensweise Dienstleistungen & Produkte Netzwerktechnik: Stand der Technik Angebotserstellung Preiseinholung Online	Ermittlung von Kundenanforderu ngen Auswahl passender Netzwerkkompon enten Auftragsorganisati on: Festlegung der Projektphasen Auftragsplanung: Planung eines Netzwerks	Verhalten bei Gesprächen	4 Gruppen erstellen ein Angebot zu OS2-, OM2-, OM3- und OM4-Faser Hardwarebeschaffung über das Internet	Stückliste Angebot	Angebot Vorlage Internet	Präsentation der 4 Angebote	
		Netzwerktechnik:			Annahme des Angebotes un	d Installation eine	r Beispielstrecke mit	Abnahmemessung	

Berufsschule, Informationselektroniker/-in, 2. Ausbildungsjahr

90 + 90	Installation und Abnahme	Netzwerkverkabelung Netzwerkkomponente n LwL-Spleißkoffer Netzwerk-Kabel- Tester für LwL-Kabel Arbeitsablaufplan: Aufbau Arbeitsschritte Werkzeug & Materialien Arbeitssicherheit LwL- Sicherheitsregeln	Anwendung von Methoden zur Fehlerdiagnose Pegelmessung Handhabung von geeigneten Werkzeugen	Werkzeuge und Methoden zur Diagnose und Fehlerbehebu ng: Eingrenzung von Fehlern Bedeutung einer systematische n Fehlersuche Administration und Erweiterung von LAN- Netzwerken	LwL-Steckerspleiß mit FIC- Steckern LwL-Fusionsspleiß mit Pigtails	Permanent Link von Patchfeld zu Patchfeld (LwL-Stecker zu LwL- Stecker)	Präsentation LwL-Kabel, LwL- Stecker (SC/PC), Glasschere, Millerzange, Isopropanol, Reinigungstüche r, Cleaver (= LwL- Brechwerkzeug)	Abnahmemessung mit Lichtquelle und LwL-Pegelmesser
180	Theorieeinheit mit Kontrollfragen,	Pegel, Dämpfung Kabeltypen LwL Steckertypen, Wellenlänge	Netzwerktechnik: Gegenüberstellun g der Vernetzungsmögli chkeiten hinsichtlich Übertragungsrate n, Zuverlässigkeit und Zukunftssicherheit Diagramme in logarithmischer Darstellung	Notwendigkeit von Stabilität und Zuverlässigkeit des Systems Skalierbares Netzwerk für zukünftige Erweiterungen Netzwerktechn ik: Bedeutung von Dämpfung in der Übertragungst echnik	Grundlagen der strukturieren Lernsystematische Einheit	Verkabelung im S Grundlagen LwL-Technik LwL- Dimensionieru ng Arbeitsschutz LwL- Abnahmemess ung	Sekundärbereich (U _l <u>Skript</u>	Olink) Wiederholungsfragen

Berufsschule, Informationselektroniker/-in, 2. Ausbildungsjahr

45	Mebis-Übung				
45	Kurzarbeit				

Berufsschule, Informationselektroniker/-in, 2. Ausbildungsjahr

	Materialien	Unterlagen, Medien,
--	-------------	---------------------

Deine Firma Datum

Staatl. Berufsschule XYZ Max Mustermann Schulstraße 7 12345 Schulhausen

Angebot für LwL-Uplink

Sehr geehrter Herr Mustermann,

gerne unterbreiten wir Ihnen folgendes Angebot für die Anbindung Ihres Klassenraumes an den Serverraum:

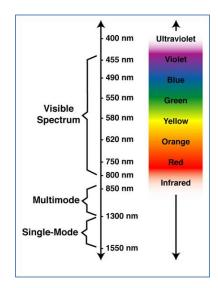
Pos	Bezeichnung	Anzahl	Einzelpreis	Brutto
1	600m LwL, OM2, 8 Fasern	600		
2	Stecker OM2 , SC	16		
3	Patchfeld	2		
4	Adapter für Patchfeld, SC	16		
5	Switch 24 Port mit 4 LwL- Uplink	2		
6	SFP-Modul (GBIC), OM , 1 Gbit/s, LC	8		
7	LwL-Patchkabel, OM2 , SC-LC duplex, 0,5 m	8		
8	Kleinmaterial	1		
9	Arbeitszeit	16		
10	Spleißpauschale	16		
			Nettopreis:	
			MwSt 16%:	
			Bruttopreis:	

Das Angebot ist gültig bis 31.12.20xx. Wir hoffen, dass wir Ihnen ein ansprechendes Angebot unterbreiten konnten. Sollten Sie Fragen haben, so bitten wie Sie uns jederzeit zu kontaktieren.

Mit freundlichen Grüßen

DeinName

Berufsschule, Informationselektroniker/-in, 2. Ausbildungsjahr

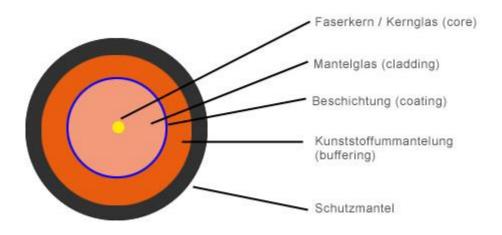

1. Optische Glasfaserkabel

Lichtwellenleiter (Abk.: **LWL**) sind aus Lichtleitern bestehende oder zusammengesetzte, teilweise konfektionierte, mit Steckverbindungen versehene Kabel und Leitungen zur **Übertragung von Licht** im sichtbaren sowie ultravioletten oder infraroten Bereich.

Lichtwellenleiter kommen heute vor allem

- als **Übertragungsmedium** für leitungsgebundene **Telekommunikation** (Glasfaserkabel),
- zur **Übertragung von Energie**: Lichtleitkabel für Laserstrahlung zur Materialbearbeitung und in der Medizin,
- für **Beleuchtungs- und Abbildungszwecke**: Mikroskopbeleuchtungen, Endoskope, Dekoration sowie
- in der **Messtechnik**, z. B. bei Infrarotthermometern und Spektrometern zum Einsatz.

Zur Signalübertragung über kurze bis mittlere Entfernungen (bis ca. 10 m) und zur Dekoration werden Lichtwellenleiter aus Kunststoff verwendet, kurz **POF- Plastic Optical Fibre genannt**.



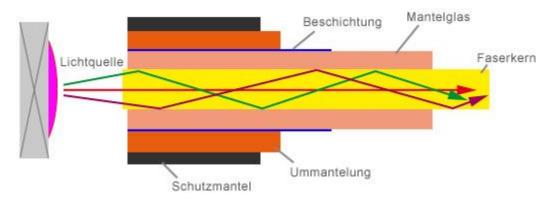
Quelle: Corning Network IQ

Berufsschule, Informationselektroniker/-in, 2. Ausbildungsjahr

Aufbau und Funktionsweise

Quelle: www.glasfaserkabel.de/Der-Unterschied-zwischen-Singlemode-und-Multimode-LWL-Kabeln:_:13.html, 2022

Glasfaserkabel bestehen aus hochtransparenten Glasfasern (meist aus reinstem Kieselglas, chemisch Siliziumdioxid), die mit einem Glas niedrigerer Brechungszahl ummantelt sind. Die Faser besteht aus einem Kern (engl. core), einem Mantel (engl. cladding) und einer Schutzbeschichtung (engl. coating und/oder buffer). Der **lichtführende Kern** dient zum Übertragen des Signals. Der **Mantel** hat eine niedrigere optische Brechzahl (Dichte) als der Kern. Der Mantel bewirkt dadurch eine Totalreflexion an der Grenzschicht und somit eine Führung der Strahlung im Kern des Lichtwellenleiters.


Die äußere Beschichtung ist ein Schutz vor mechanischen Beschädigungen und besteht meist aus einer 150–500 µm dicken Lackierung aus speziellem Kunststoff (meist Polyamid, Acryl oder Silikon), die die Faser auch vor Feuchtigkeit schützt. (zudem Verbesserung der mechanischen Belastbarkeit).

Berufsschule, Informationselektroniker/-in, 2. Ausbildungsjahr

Arten von Lichtwellenleitern (LwL):

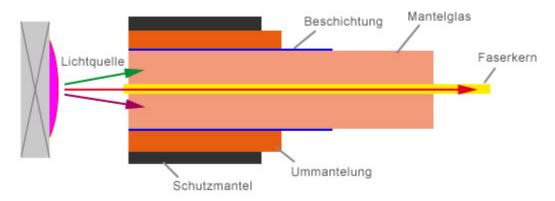
Multimode (OM oder MM)

Quelle: www.glasfaserkabel.de/Der-Unterschied-zwischen-Singlemode-und-Multimode-LWL-Kabeln:_:13.html, 2022

Aufgrund mehrerer möglicher Lichtwege kommt es zu Signalbeeinflussungen (Laufzeitunterschiede), daher sind Multimode-Fasern zur Nachrichtenübertragung über große Distanzen bei hoher Bandbreite nicht geeignet.

Multimode-Fasern zur Nachrichtenübertragung haben einen inneren Kerndurchmesser von bis 62,5 µm (US-Standard) bzw. die feineren Ausführungen von nur **50 µm** (EU-Standard). Der äußere Durchmesser der Faser beträgt bei beiden Ausführungen jedoch fast immer 125 µm. Das Licht wird mit Laser-**Dioden** erzeugt.

Bezeichnung	Wellenlänge	Kabellänge in m	Steckertyp - Kabel	Adernpaarzahl
100 BASE-FX	1300 nm		ST, SC, LC OM LWL	1
100 Base-SX	850 nm			
1000 BASE-SX	850 nm	220 - 550	ST, SC, LC OM LWL	1
10 G BASE-LX4	1275nm, 1300nm, 1325nm, 1350nm		ОМ	1


S = 850 nm L = 1310 nm X = 8b/10b, LAN 4 = WWDM mit 4 Wellenlängen

LWL – Lichtwellenleiter **OM / MM** – Optical Multimode-Glasfaser

Berufsschule, Informationselektroniker/-in, 2. Ausbildungsjahr

Mono- bzw. Singlemode (OS oder SM)

Quelle: <u>www.glasfaserkabel.de/Der-Unterschied-zwischen-Singlemode-und-Multimode-LWL-Kabeln: :13.html</u>, 2022

Das Brechzahlprofil von Singlemode-Fasern ist so dimensioniert, dass die bei Multimode-Fasern problematische Mehrwegeausbreitung (intermodale Dispersion) entfällt– das Signallicht breitet sich in einer Singlemode-Faser nur in einem einzigen geführten Wellenleitermodus aus, daher die Bezeichnung single-mode. Die Standard-Singlemode-Faser (SSMF, z. B. Corning SMF-28) hat einen Kerndurchmesser von **9 µm**. Das ist deutlich kleiner als der Kerndurchmesser von Multimode-Fasern, für die Lichteinkopplung werden hier deswegen **Laser** verwendet. Der äußere Durchmesser beträgt jedoch auch hier 125 µm.

Bezeichnung	Wellenlänge	Kabellänge in m	Steckertyp - Kabel	Adernpaarzahl
1000 BASE-LX	1310 nm	550 – 5000	ST, SC, LC OS-LwL	1
10 G BASE-LR	1310 nm	10 000	ST, SC, LC OS-LwL	1
10 G BASE-ER	1550 nm	40 000	ST, SC, LC OS-LwL	1
100G BASE-LR4			ST, SC, LC OS-LwL	1

LwL – Lichtwellenleiter **OS / SM** – Optical Singlemode-Glasfaser

L = 1310 nm E = 1550 nm R = 64b/66b, LAN X = 8b/10b, LAN

Berufsschule, Informationselektroniker/-in, 2. Ausbildungsjahr

Aufbau einer LWL-Übertragungsstrecke

Die Übertragungsstrecke besteht aus:

- einem optischen Sender (Laserdiode oder Laser),
- einem Glasfaserkabel, ggf. mit Repeatern (Nachverstärkung und Signalregeneration) und
- einem optischen Empfänger.

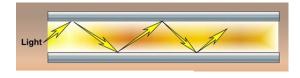
Bei der Umwandlung elektrischer Signale in Lichtsignale und umgekehrt werden spezielle Sender und Empfänger eingesetzt.

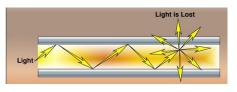
Sender und Empfänger sind in einer Einheit verbaut und heißen daher **Transceiver** (**Trans**mitter und Re**ceiver**). In der Abb. sieht man einen Transceiver in der derzeit üblichen Bauform (SFP oder Mini-GBIC).

SFP: Small form-factor pluggable transceiver

GBIC: Gigabit Interface Converter

Nenne 10 Vorteile von LWL:

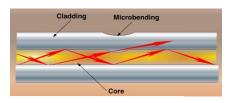

Berufsschule, Informationselektroniker/-in, 2. Ausbildungsjahr						
Nenne 5 Nachteile von LWL:						


Berufsschule, Informationselektroniker/-in, 2. Ausbildungsjahr

Mögliche Störungen der Übertragung:

Dämpfung durch Absorbtion entsteht durch

Quelle: Corning Network IQ



Dämpfung durch Streuung verursacht durch

Quelle: Corning Network IQ

Spleiße dämpfen um 0,02 bis 0,2 dB

Deformierung des Kernes dämpft um 2 bis 5 dB/km

Quelle: Corning Network IQ

Merke:

Faserbruch (Unfallgefahr, insbesondere bei den dicken LWL für Hochleistungslaser)

Dispersion:

Output Pulse

Optical Fiber

T2 > T1

T2

Quelle: Corning Network IQ

Monomode-Fasern werden_dispersionskompensierend gefertigt.

Berufsschule, Informationselektroniker/-in, 2. Ausbildungsjahr

Steckertypen:

Übersicht der gebräuchlichsten LWL-Steckverbinder

Stecker	Verschlussmechanis- mus	Ferrulendurch- messer	Einfügedämpfung [*]	Faseranzahl	Normung
FC	Schraubverschluss	2,50 mm	0,2 dB	1	IEC 60874- 7
ST (BFOC)	Bajonettverschluss	2,50 mm	0,20,4 dB	1	IEC 60874- 10
SC	Push-Pull-Prinzip	2,50 mm	0,20,3 dB	1	IEC 60874- 13
E-2000	Push-Pull-Prinzip	2,50 mm	0,2 dB	1	IEC 61754- 15
LC	Spannbügelverschluss	1,25 mm	0,2 dB	1	IEC 61754- 20
MPO/MTP	Push-Pull-Prinzip	MT-Ferrule	0,3-0,5 dB	4-80	IEC 61754- 7

Aufgabe: Ordnen Sie die obigen LwL-Kabel zu.

Berufsschule, Informationselektroniker/-in, 2. Ausbildungsjahr

www.lichtleiterkabel.com/products/de/LWL- Kabel/LWL-Patchkabel-Simplex-E2000-APC- E2000-APC/, 2022
www.telegaertner.com/basiswissen-glasfasernetze, 2022

Link: https://www.youtube.com/watch?v=OTv8d-eW-xs 20.000 Kabel unter dem Meer

Berufsschule, Informationselektroniker/-in, 2. Ausbildungsjahr

LwL-Unterweisung

Ort: Datum:	_

Folgende Themen sind Inhalt der Unterweisung:

Laserstrahlung und ihre Gefahren, LwL-Montage und ihre Gefahren

- Wirkung der Laserstrahlung auf das Auge,
- sonstige Gefährdungsmöglichkeiten und Nebenwirkungen,
- Schutzvorschriften und betriebliche Anweisungen,
- Verhalten im Laserbereich,
- Schutzmaßnahmen und -einrichtungen am Arbeitsplatz,
- Benutzung von persönlichen Schutzausrüstungen,
- Kontrolle baulicher und apparativer Schutzvorrichtungen,
- Gefahren bei der LwL-Montage
- Fachgerechte Entsorgung der LwL-Faserreste
- Umgang mit Reinigungsalkohol
- Verhalten im Schadenfall.

Mit seiner Unterschrift bestätigt die Schülerin/der Schüler, dass die obigen Inhalte unterwiesen wurden und durch die Schülerin/den Schüler verstanden worden sind. Die Unterweisung muss mindestens jährlich einmal erfolgen. Der Nachweis der Unterweisung ist mindestens 2 Jahre aufzubewahren.

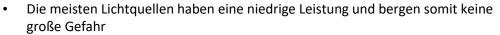
Über die Gefahren für Mensch und Umwelt sowie die durchzuführenden Schutzmaßnahmen und Verhaltensregeln bin ich ausführlich unterrichtet worden:

Nr.	Name, Vorname, Klasse	Unterschrift
1		
2		

Berufsschule, Informationselektroniker/-in, 2. Ausbildungsjahr

3			
4			
5			
6			
7			
8			
Ort, Datum		Unterschrift Unterweisender	

Berufsschule, Informationselektroniker/-in, 2. Ausbildungsjahr


LwL-Sicherheitshinweise

· Chemische Sicherheit

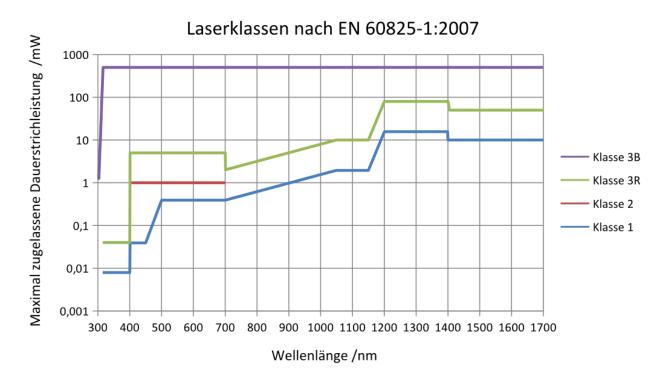
 Isopropyl Alkohol ist feuergefährlich, Flammpunkt = 22 °C, kann bei Augenkontakt zu Entzündungen führen, Bei Augenkontakt ca. 15 Minuten mit klaren Wasser spülen!

Laser Bedienungshinweise:

- Laserstrahlen sind unsichtbar, ein direktes Hineinsehen verursacht keinen Schmerz,
 Das bedeutet, dass sich die Iris nicht automatisch schließen kann. Infolge dessen ist eine ernsthafte Beschädigung der Retina möglich.
- Falls eine versehentliche Augenverletzung durch Laserlicht vermutet wird, lassen Sie unverzüglich Ihr Auge bei einem Augenarzt untersuchen!
- Schauen Sie niemals in das Ende einer Faser eines LWL-Steckers oder einer Kupplung ohne sich vorher vergewissert zu haben, das keine Leistung/Power auf diesem System ist!

Quelle: Corning Network IQ

Klassifikation von Lasern nach IEC 60825


- Laserdefinition im Hinblick auf maximale zulässige Belastung (MPE)
- Laserklassifikation erfolgt nach Funktion von...
 - Stärke (pulsartig oder dauernd)
 - Strahlkohärenz
 - Wellenlänge
 - Sicherheitseindämmung um den Strahl

Warnzeichen vor Laserstrahlen nach <u>DIN EN</u> <u>ISO 7010</u>

Berufsschule, Informationselektroniker/-in, 2. Ausbildungsjahr

Quelle: Wikipedia

Berufsschule, Informationselektroniker/-in, 2. Ausbildungsjahr

Entsprechend der Gefährlichkeit für den Menschen sind die Laser in Geräteklassen eingeteilt. Die

Klasse	Ausgangsleistung/ Beschreibung	Gesund-/ Sicherheitsfragen	Beispiele / Verwendung
Klasse 1	315 – 1400nm	Laser ist ungefährlich oder in einem geschlossenen Gehäuse	
Klasse 1M	315 – 1400nm	Laser ist ungefährlich, solange keine Lupen, Ferngläser oder Mikroskope verwendet werden	
Klasse 2	Emittiert bei 400- 700nm (sichtbares) Licht, < 1mW (konstant)	Sie ist bei kurzzeitiger Bestrahlungsdauer (<0,25s) für das Auge ungefährlich (Blinzelreaktion + Abwendungsreaktion)	Vielzahl an Laserpointern,
Klasse 2M	Emittiert bei 400- 700nm (sichtbares) Licht	Wie Klasse 2, kann in Kombination mit einem Mikroskop Schäden erzeugen.	Gewehraufsatz, Laserpointer
Klasse 3B	315 - 1400nm, <500mW (dauernd) 400-700nm, <30mJ (Puls)	Kann das Auge bei direkten Kontakt schädigen jedoch bei reflektierten Licht sollte keine Schäden erzeugt werden , relativ geringe Gefahr um ein Feuer zu erzeugen.	Industrie, Militär, CD- /DVD-Brenner, Medizinlaser müssen eine Schutzverriegelung besitzen
Klasse 4	> 500mW	Sehr gefährlich für das Auge und kann die Haut schädigen; das Entzünden von Materialen ist möglich	Industrie, Militär, Medizinlaser müssen eine Schutzverriegelung besitzen

Klassifizierung nach <u>DIN EN 60825-1</u> erfolgt vom Hersteller.

Quelle: Corning, Wikipedia

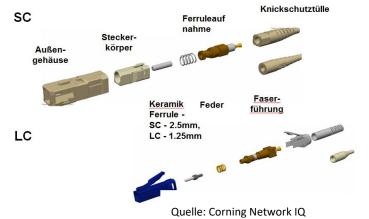
<u>Aufgabe:</u> Messen Sie den absoluten Pegel (L_b in dBm) am Ausgang eines Medienkonverters und bestimmen Sie die Leistung (P_1) des Lichts. Ordnen Sie das Ergebnis der richtigen Laserklasse zu (siehe oben). Formel: L_b = 10 lg (P_1 /1mW) oder P_1 = 1 mW * 10 $^{Lb/10}$

Berufsschule, Informationselektroniker/-in, 2. Ausbildungsjahr

LwL-Spleißen (LwL-Terminierung)

Faser - Verarbeitungshinweise

- Gebrochene Fasern sind scharf und können in die Haut eindringen,
- Räumen Sie Faserreste auf, damit sie keine Probleme verursachen.
- Benutzen Sie eine Pinzette, um Faserreste auf ein Klebeband zu kleben oder in einen Plastikbehälter zu bringen.
- · Bewahren Sie die Reste richtig auf.
- Benutzen Sie Handschuhe, wenn Sie Kabel absetzen.
- Generell keine Nahrungsmittel und Getränke bei Spleißarbeiten.


Quelle: Corning Network IQ

Kabel - Bearbeitungshinweise

- LWL-Kabel sind empfindlich gegenüber übermäßigen Zugbelastungen, Querdruck und Biegungen, studieren Sie erst das Kabeldatenblatt, bevor Sie ein Kabel verlegen oder montieren.
- Biegen Sie ein Kabel nicht unter dem empfohlenen minimalen Biegeradius.
- Halten Sie unbedingt die maximale Zugbelastbarkeit des Kabels Quetschen oder Knicken Sie das Kabel nicht. Wenn die angegebenen mechanischen Eigenschaften des Kabels nicht eingehalten werden, kann dieses zerstört und somit nicht die Übertragungseigenschaften

gewährleistet werden. Folglich muss das Kabel Re-Installiert werden.

<u>Daumenregel – Minimaler Biegeradius</u>
 Während der Installation > 15 x Kabel-Ø
 In Betrieb > 10 x Kabel-Ø

Möglichkeiten der Fasermontage

A) Vorkonfektioniert: Plug and Play, Cable Assemblies, Break-Out-Kabel, Patch-Kabel

Vorteil:			
Nachteil:			

Berufsschule, Informationselektroniker/-in, 2. Ausbildungsjahr

B) Pigtail spleißen:
Mechanischer Spleiß =
Fusionsspleiß =
C) Direkte Installation von LwL-Steckern:
Epoxy and Polish =
No Epoxy/No Polish (UniCam ® oder FIC) =

Steckerspleiß am Beispiel einer 900µm-Faser:

- Adern freilegen: Kabelmantel entfernen, Armidgarn bzw. Gel entfernen
- 2. Knickschutztülle auf die Faser schieben
- 3. Kunststoffmantel und Lackierung der Faser mit Abisolier-Zange abnehmen
- 4. Faser mit Isopropyl-Alkohol reinigen
- 5. Faser brechen mit Cleaver
- 6. (Cam-)Spleiß vornehmen
- 7. Knickschutztülle und Außengehäuse am Stecker anbringen

Faser & Bündeladerfarbfolge

1	•	Blau	BL	Farbfolge
2	•	Orange	OR	entspricht EIA/TIA-598-A
3	o	Grün	GN	als auch der
4	•	Braun	BR	Telcordia Farbfolge
5		Grau	GR	
6	•	Weiß	WS	
7	•	Rot	RT	
8	•	Schwarz	SW	
9	•	Gelb	GE	
10	•	Violett	VI	
11	•	Rosa	RS	
12	•	Aqua	AQ	

> 12 ist die gleiche Farbfolge mit schwarzen Streifen

Quelle: Corning Network IQ

LwL-Fehlersuche

60% der Fehler sind auf verschmutzte Stecksysteme zurück zu führen: Hier hilft das Reinigen mit entsprechenden Reinigungsstäbchen oder mit Isopropyl-Alkohol

Achtung: Niemals in eine in Betrieb befindliche Faser bzw. Stecker schauen, da das LwL-Licht für das menschliche Auge unsichtbar ist.

Manche Fehler lassen sich auch mit einem LwL-Fault-Finder lokalisieren.

Leitungsunterbrechungen lassen sich mit einem optischen OTDR (Optical Time Domain Reflektometer) lokalisieren. Hier wird die Laufzeit von einem Lichtimpuls gemessen.

Berufsschule, Informationselektroniker/-in, 2. Ausbildungsjahr

LWL-Kabel: Spezifikationen

Kategorie	Farbcode	Fasertyp	Dämpfung in dB/km					
			850 nm	1310 nm	1383 nm	1550 nm		
Multimodefasern						n		
OM1	orange ³	G62,5/125	3,5	1,5	n.a.	n.a.		
OM2	orange	G50/125	3,5	1,5	n.a.	n.a.		
OM3	aqua	G50/125	3,0	1,5	n.a.	n.a.		
OM4	violett ⁴	G50/125	3,0	1,5	n.a.	n.a.		
OM5	lime	G50/125	3,0	1,5	n.a.	n.a.		
	Monomodefasern (Singlemode-Fasern)							
OS1	gelb ⁵	E9/125	n.a.	1,0	n.a.	1,0		
OS2	gelb ⁵	E9/125	n.a.	0,4	0,4	0,4		

OM = Optical Multimode OS = Optical Singlemode Quelle: www.fia-online.co.uk, Wikipedia LwL

Maximale Reichweiten und Dämpfungen:

viaximale Reich									
Ethernet		OM2		ОМЗ		OM4		OS2	
Тур	λ [nm]	CIL [dB]	l [m]						
100 Base-SX	850	4,00	300	4,00	300	4,00	300		
100 BASE-FX	1300	6,30	2000	6,30	2000	6,30	2000		10 000
1000 BASE-SX	850	3,56	550	4,50	1000	4,80	1000		
1000 BASE-LX	1300	2,35	550	2,35	550	2,35	550	4,56	5 000
10G BASE-SR	850	2,30	82	2,60	300	3,10	450		
10G BASE-LX4	1300	2,00	300	2,00	300	2,00	300	6,20	10 000
10G BASE-LRM	1310	1,90	220	1,90	220	1,90	220	6,20	10 000
10G BASE-ER	1550							10,90	40 0000
40 GBASE-SR4	850			1,90	100	1,50	150		

Berufsschule, Informationselektroniker/-in, 2. Ausbildungsjahr

40 GBASE-LR4	1310						6,70	10 000
40 GBASE-ER4	1550						18,00	40 000
100 GBASE-SR10	850		1,90	100	1,50	150		
100 GBASE-LR4	1310						6,30	10 000
100 GBASE-ER4	1550						18,00	40 000

Quellen: http://www.thefoa.org/tech/Linkspec.htm, Wikipedia, web.archive.org
Hinweis: CIL (Channel Insertion Loss) ist die max. Dämpfung für eine Standard-LwL-Strecke (Doppel-LwL-Stecker – LwL mit max. Länge – Doppel-LwL-Stecker)

Farbschema Konfektionierte Kabel / P&P Für Steckerkörper SC. LC. ST. MTRJ

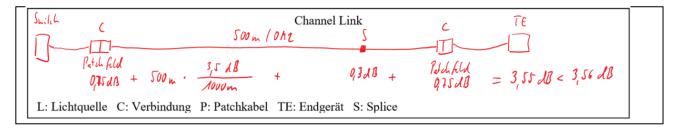
i di Oteckei	NOI PC		_0, 01,	141 1 1 10	
Farbe/ Komponente	SM APC E9	SM UPC E9	MM 50μm OM2	MM 50μm OM3	MM 50μm
Knickschutz	MTP is black				
Steckerkörper *Gilt nicht für Metall Steckerkörper FC & ST					
Kabel Mantel Simplex; Zip; Innen: i-MIC-, Minibündel-, Maxibündel-, Bändchenkabel					

Quelle: Corning Network IQ

APC – Angled Physical Contact:

UPC - Ultra Physical Contact:

Merke:


Maximale Einfügedämpfung pro Steckerpaar:

Maximale Einfügedämpfung für Spleiß (mechanisch, Fusion):

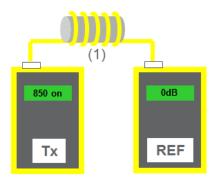
Berufsschule, Informationselektroniker/-in, 2. Ausbildungsjahr

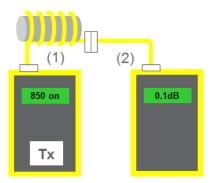
<u>LwL-Link-Loss-Budget</u> = berechnete Dämpfung einer LwL-Strecke:

Beispielrechnung für eine 1000 Base SX-Verbindung (850 nm) von 500m:

2 Doppelsteckverbindungen (C)		
500m Faser OM2 (850nm)		
1 Spleiß		CIL=
Link-Loss-Budget	maximal	

Aufgabe: Berechnen Sie das Link-Loss-Budget für den Versuchsaufbau (1000 Base SX, 100m)




Berufsschule, Informationselektroniker/-in, 2. Ausbildungsjahr

LwL-Messtechnik

Link Loss Messung (Dämpfung der LwL-Strecke): Kalibrieren und Testen (OM), z.B. mit Opternus CSM1-3

- 1. Verbinden Sie Patchkabel 1 vom Sender zum Empfänger (Power Meter) mit einem Mandrel Wrap (Wickeldorn) und messen Sie die gekoppelte Energie.
- 2. Setzen Sie den "meter" auf 0. Der Empfänger zeigt nun den relativen Verlustwert zum Referenzwert.
- 3. Entfernen Sie nun das Patchkabel am Empfänger und schließen Sie nun ein zweites Patchkabel an. Der angezeigte Wert ist nun der Steckerpaarverlust zwischen den Patchkabeln. Er sollte <0,1dB sein
- 4. Lösen Sie das zweite Patchkabel von der Kupplung und verbinden Sie nun die beiden Enden des zu testenden Systems. Der Empfänger zeigt nun die komplette Dämpfung des zu testenden Systems am Empfänger an.

Quelle: Corning Network IQ

Hinweise:

Da bei OM-Fasern bei kurzen Strecken auch Moden höherer Ordnung durch das Cladding (Glasmantel) geführt werden, muss eine **Mandrel** (Wickeldorn) verwendet werden um Messfehler auszuschließen. Diese hat für OM2-Fasern einen Durchmesser von 25mm. Quelle: Corning

Für die Messung müssen spezielle Patchkabel verwendet werden, die eine sehr geringe Dämpfung aufweisen.

Aufgabe: Messen Sie die Channel-Dämpfung für den Versuchsaufbau (1000 Base SX, 100m) und vergleiche n Sie diese mit dem Link-Loss-Budget von oben.

Laserklasse

Unterrichtskonzept mit illustrierenden Aufgaben

Berufsschule, Informationselektroniker/-in, 2. Ausbildungsjahr

Aufgabe: Beantworten Sie folgende Fragen auf einen extra Blatt.

Beschreiben Sie den Aufbau eines Lichtwellenleiters. Nennen Sie 5 Vorteile und 3 Nachteile von LwL. Bei G50/125 handelt es sich um eineFaser.	
Bei E9/125 handelt sich um eine	Faser.
Nennen Sie die Wellenlängen von OM und OS-Faser.	
Welchen Nachteil hat eine OM-Faser gegenüber einer OS	-Faser?
Warum wird sich die OS-Faser durchsetzen?	
Nennen Sie 5 Stecker für LwL-Verbindungen.	
Nennen Sie die 3 Ebenen der strukturierten Verkabelung	mit ihren vorgeschriebenen Medien.
Unterscheiden Sie Reparaturspleiß, Fusionsspleiß, Stecke	rspleiß.
Beschreiben Sie die Vorgehensweise bei der LwL-Dämpfu Ein Medienconverter mit einen Ausgangspegel von -10 dE 5 dB. Wie hoch ist der Pegel am Ende der Leitung?	
Berechnen Sie die maximale Dämpfung für folgende Verbeinem Spleiß – Stecker bei 1550nm.	indung: Stecker – 3000m OS-Faser mit
Abkürzungen/Begriffe:	
LwL	
OM / MM	
OS /SM	
Intermodale Dispersion	
SFP	
Terminierung	
Millerzange	
Pigtail	
Dämpfung	
Pegel	
dB	
Mandrel	
OTDR	

Berufsschule, Informationselektroniker/-in, 2. Ausbildungsjahr

Wellenlänge

UPC/PC

APC

Hinweise zum Unterricht

Link: https://www.youtube.com/watch?v=OTv8d-eW-xs 20.000 Kabel unter dem Meer

(45 Minuten über die Geschichte der Glasfaser, Herstellung, Fehlersuche und –behebung in der Nordsee, Seekabelverlegung)

Quellen- und Literaturangaben

Fachliteratur

- Fachkundebuch, Europa-Verlag
- Tabellenbuch, Westermann-Verlag

Quellen

Corning Network IQ Programm 2013 Wikipedia