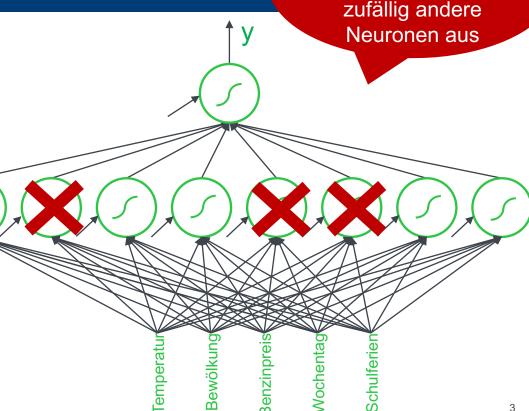


Das bekannte Beispiel

 Achtung, normalerweise dürfte ein so winziges Netzwerk kein Overfitting verursachen

Trotzdem hier zur Illustration


Möglicher Grund für Overfitting

 Netzwerk reagiert bei Overfitting auf zu spezielle Muster in den Trainingsdaten

 Und damit auf zu spezielle Kombinationen von Neuronen

Idee: zwinge das Netzwerk,
 Entscheidungen auf mehrere verschiedene Muster zu stützen

Dropout: schalte für jedes Trainingsexemplar zufällig andere Neuronen aus

Der Effekt von Dropout

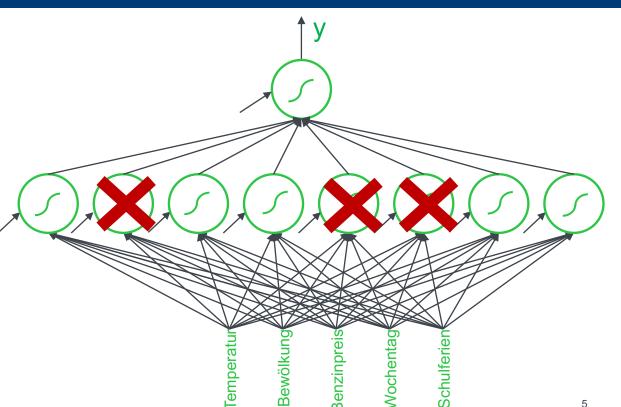
 Für jedes Trainingsexemplar ein etwas anderes Netzwerk

 Erfinder von Dropout: dadurch kombiniert man viele leicht unterschiedliche Architekturen*

 Kombination von mehreren Netzwerken: bekannte Technik gegen Overfitting, Stichwort Ensembles

*https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf,

S. 1930



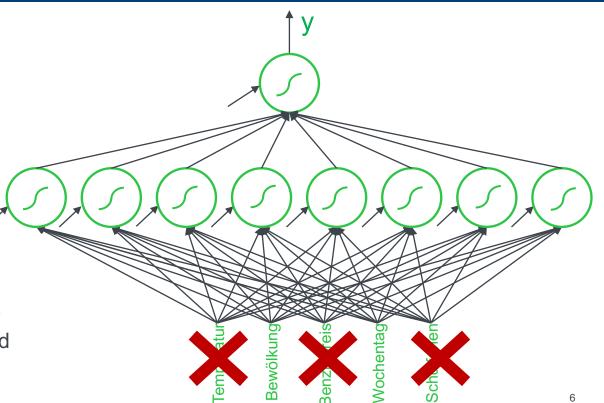
Die tatsächliche Implementierung von Dropout

 Architektur des Netzwerks wird beibehalten

· Keine Neuronen "löschen"

 Statt dessen Eingänge von "ausfallenden" Neuronen in die darüberliegende Schicht auf Null setzen

Die tatsächliche Implementierung von Dropout


 Architektur des Netzwerks wird beibehalten

· Keine Neuronen "löschen"

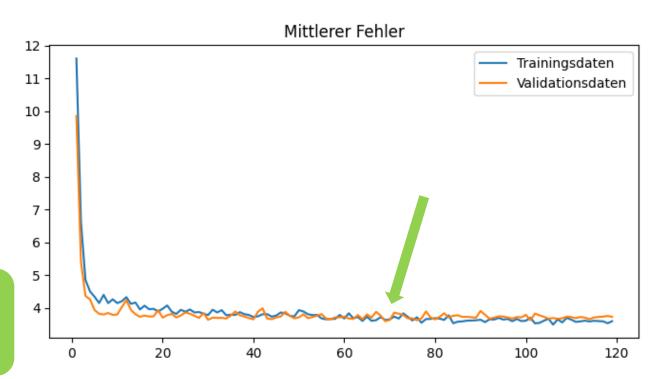
 Statt dessen Eingänge von "ausfallenden" Neuronen in die darüberliegende Schicht auf Null setzen

 Möglich für alle Schichten, auch für die Eingangsschicht

 Ausfallwahrscheinlichkeit wird für jede Schicht spezifiziert

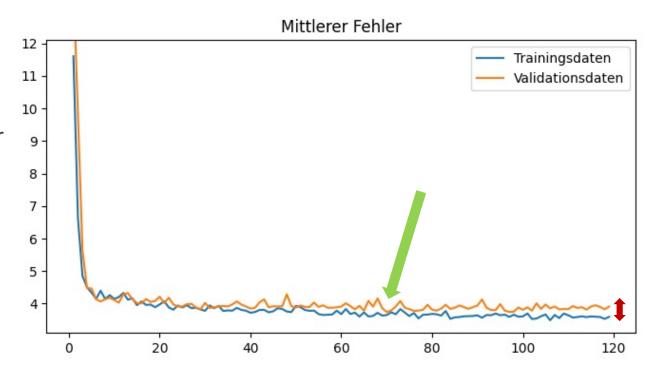
Dropout ist eine Technik zur Vermeidung von Overfitting.

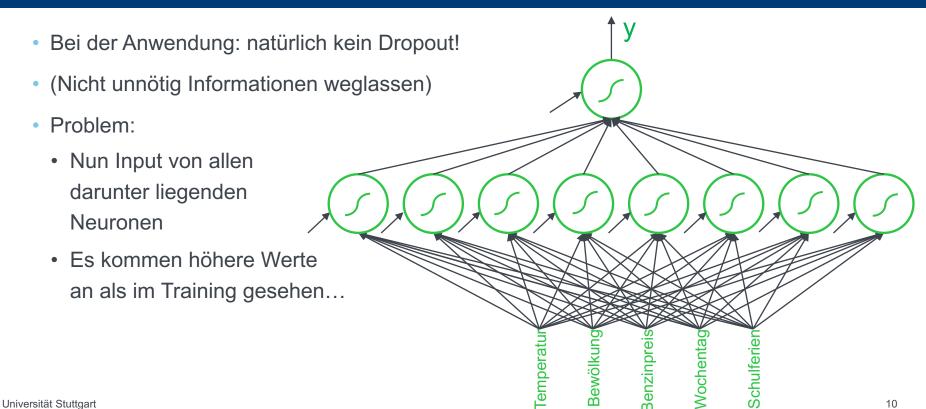
In Dropout-Schichten werden für jedes Trainingsexemplar zufällig mit einer gewissen Wahrscheinlichkeit Eingänge auf Null gesetzt.


Die Dropout-Wahrscheinlichkeit ist ein Hyperparameter und muss für jede Dropout-Schicht separat spezifiziert werden.

Nochmal: Beispiel mit Dropout und Early Stopping

- Mittlerer Fehler
 nach 69 Epochen
 3.63 auf Trainingsdaten
 3.60 auf Valid.-daten
- Dropout erschwert Vorhersage (nur beim Training)

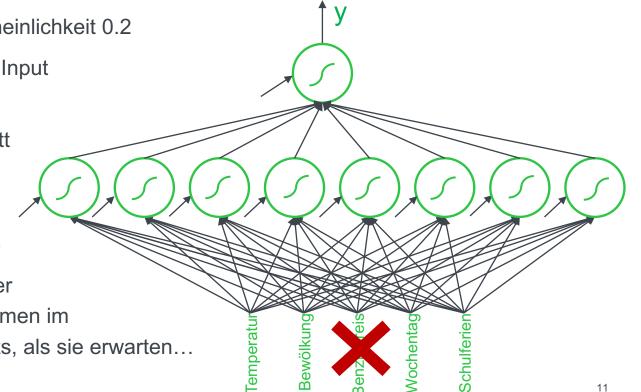

Das fertig trainierte Netz ist ohne Dropout noch besser, weil dann keine Information ungenutzt bleibt.


Bei Anwendung von Dropout auch auf Validierungsdaten

- Unfair: Vorteil für Validierungsdaten
- Bei Anwendung mit Dropout: Mittlerer Fehler nach 69 Epochen
 3.63 auf Trainingsdaten
 3.74 auf Valid.-daten
- Doch noch (minimal)
 Overfitting

Kein Dropout bei der Anwendung

Kein Dropout bei der Anwendung


Beispiel: Dropoutwahrscheinlichkeit 0.2

 Wahrscheinlichkeit, dass Input bleibt: 1 – 0.2 = 0.8

D.h. im Training im Schnitt
 nur 0.8 * 5 = 4 Inputs

Bei Anwendung nun1 Input mehr: 5 / 4 = 1.25

 Alle Neuronen der darüber liegenden Schicht bekommen im Schnitt 25% höhere Inputs, als sie erwarten...

Lösungen für die Diskrepanz zwischen Training und Anwendung

Variante 1

- Bei der Anwendung Inputs in Dropout-Schichten kleiner machen
- Hier: skalieren mit 0.8
- Bei Dropout-Wahrscheinlichkeit p skalieren mit 1-p

Variante 2 "Umgekehrter Dropout"

- Beim Training verbleibende Inputs in Dropout-Schichten größer machen
- Hier: skalieren mit 1.25
- Bei Dropout-Wahrscheinlichkeit p skalieren mit 1 / (1-p)

Gängige Lösung in vielen Deep-Learning-Implementierungen

Dr. Antje Schweitzer

Universität Stuttgart Institut für Maschinelle Sprachverarbeitung

Universität Stuttgart

Institut für Maschinelle Sprachverarbeitung Institut für Software Engineering

Industrie- und Handelskammer Reutlingen

Reutlingen | Tübingen | Zollernalb

Industrie- und Handelskammer

GEFÖRDERT VOM

Lizenzbestimmungen

"Overfitting – Teil 2: Dropout" von Antje Schweitzer, KI B³ / Uni Stuttgart

Das Werk - mit Ausnahme der folgenden Elemente:

- Logos der Verbundpartner und des Förderprogramms
- im Quellenverzeichnis aufgeführte Medien

ist lizenziert unter:

CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/deed.de)

(Namensnennung 4.0 International)

Quellenverzeichnis

Titelfoto: <u>Biel Morro</u> (<u>https://unsplash.com/de/@bielmorro</u>) auf <u>Unsplash</u> (<u>https://unsplash.com/de/fotos/schwarze-lichterkette-J F 003jcEQ</u>), Schwarze Lichterkette, lizenziert unter <u>Unsplash-Lizenz</u> (<u>https://unsplash.com/license</u>). Bildausschnitt verändert.

