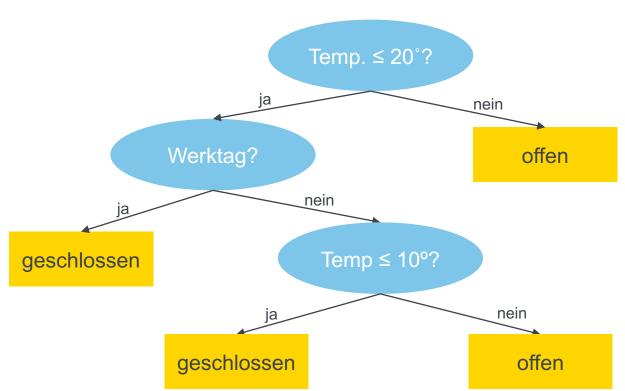


Der Entscheidungsbaum aus der Einführung zu KI-Modellen



Klassifikation

2 Klassen

offen geschlossen

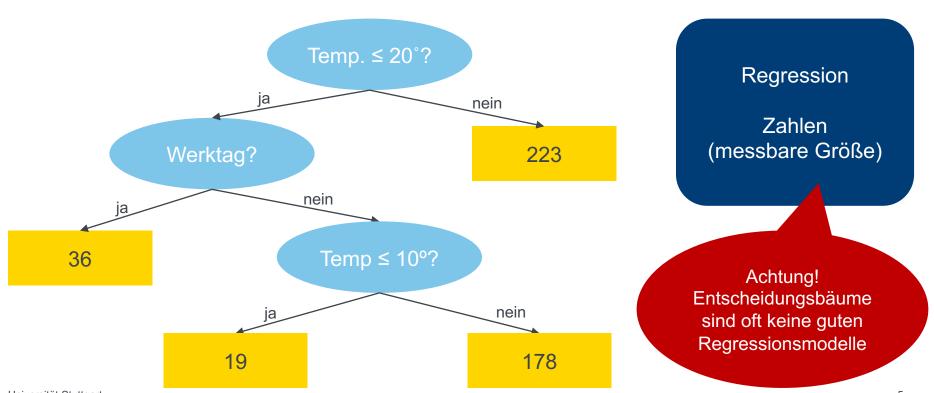
Klassifikationsbäume sind Entscheidungsbäume, bei denen das Ergebnis eine Klasse angibt.

Rückblick: Wie kamen diese Klassen zustande?

- Idee war: Eisstand öffnen, wenn mindestens 100 verkaufte Portionen zu erwarten sind
- Eigentlich schon fast ein Regressionsproblem 😉
- Könnte ersetzt werden durch 2 Schritt-Lösung:
 - Regressionsmodell
 - Plus eine Regel: offen, wenn Regressionsmodell >= 100 Portionen vorhersagt

- Und auch umgekehrt: Klassifikationsbaum umwandelbar in Regressionsbaum
 - Ersetze Klassen durch die jeweiligen mittleren Verkäufe

Ein Regressionsbaum



Regressionsbäume sind Entscheidungsbäume, bei denen das Ergebnis eine messbare Größe angibt.

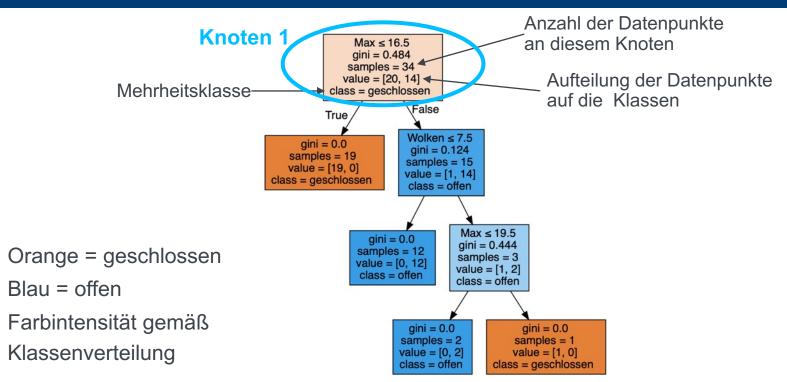
Ein aus Daten gelernter Klassifikationsbaum

Die Beispieldaten

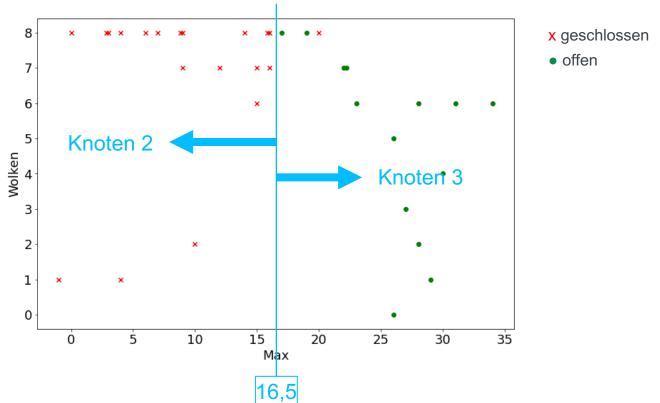
- Daten aus praktischem Beispiel vom Anfang
- Höchsttemperatur (Max), Bewölkung (Wolken), Wochenende, Verkaufte Portionen
- hier: Wolken messbare Größe (Bedeckungsgrad) zwischen 0 und 8

	Datum	Max	Wolken	Wochenende	Portionen	Zustand	
9	2018-04-10	20.0	8.0	0	84.0	geschlossen	Klassen
10	2018-04-21	27.0	3.0	1	270.0	offen	nachträglich zum
11	2018-05-02	16.0	8.0	0	45.0	geschlossen	Lernen ergänzt:
12	2018-05-13	17.0	8.0	1	138.0	offen	das wäre der optimale Zustand
13	2018-05-24	22.0	7.0	0	100.0	offen	gewesen
14	2018-06-04	30.0	4.0	0	247.0	offen	gomoson

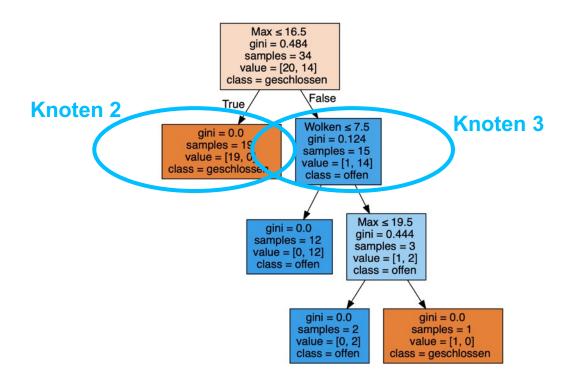
Klassifikation: Vorhersage des optimalen Zustands



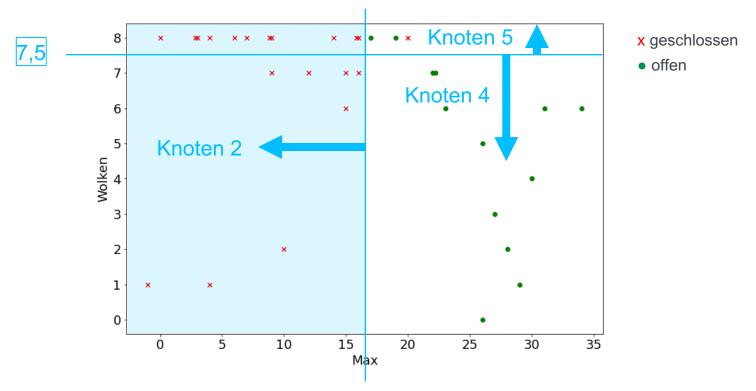
Datenpunkte an Knoten 1



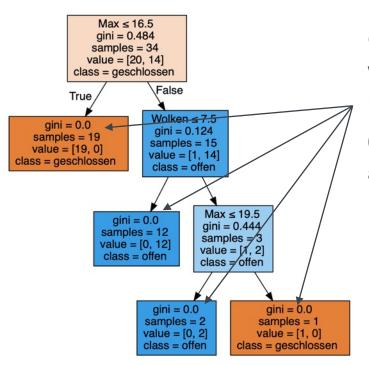
Klassifikation: Vorhersage des optimalen Zustands



Datenpunkte an Knoten 3



Klassifikation: Vorhersage des optimalen Zustands

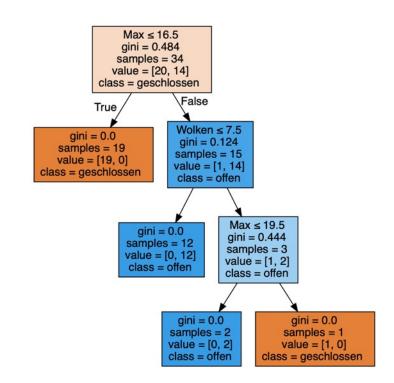


Gini-Index: wie ungleich sind die Klassen verteilt?

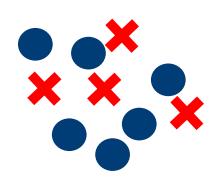
0 = alle Datenpunkte aus derselben Klasse

Der Gini-Index einer Menge

Wie wahrscheinlich ist es, dass ein zufällig gewählter Datenpunkt aus der Menge nicht korrekt klassifiziert wird, wenn er gemäß der Klassenverteilung der Menge zufällig klassifiziert wird?



Gini-Index



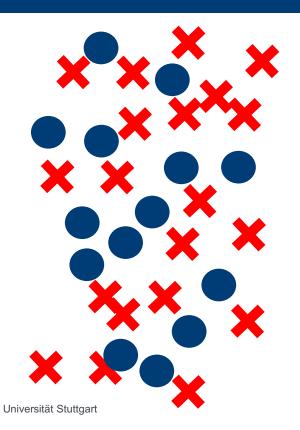
Verteilung der Klassen:

x 0.4 • 0.6

Gez	ogen:	Klas	sif. als:	Wahrscheinlichkeit:		
X	0.4	X	0.4	0.4 * 0.4 = 0.16		
X	0.4	•	0.6	0.4 * 0.6 = 0.24	foloolo	
•	0.6	X	0.4	0.6 * 0.4 = 0.24	falsch	
•	0.6	•	0.6	0.6 * 0.6 = 0.36		

Gini-Index: 0.24 + 0.24 = 0.48

Gini-Index



Verteilung der Klassen:

$$\mathbf{x}$$
 20/34 = 0.588

$$\bullet$$
 14/34 = 0.412

Gezogen: Klassif. als: Wahrscheinlichkeit:

 \mathbf{x} 0.588 \mathbf{x} 0.588 0.588 * 0.588 = 0.346

0.588
0.412
0.588 * 0.412 = 0.242
falsch
0.412
0.588
0.412 * 0.588 = 0.242

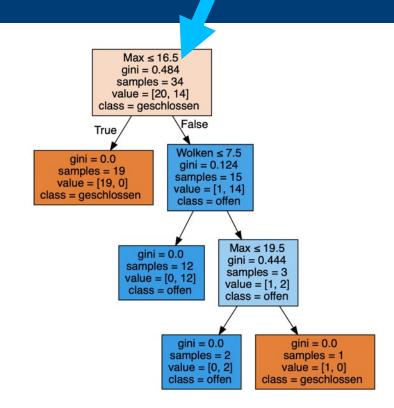
• 0.412 • 0.412 * 0.41 = 0.170

Gini-Index: 0.242 + 0.242 = 0.484

16

Der Gini-Index einer Menge

Wie wahrscheinlich ist es, dass ein zufällig gewählter Datenpunkt aus der Menge nicht korrekt klassifiziert wird, wenn er gemäß der Klassenverteilung der Menge zufällig klassifiziert wird?



Der Gini-Index eines Knotens ist null, wenn alle Datenpunkte an diesem Knoten zur selben Menge gehören.

Er ist nur wenig größer als null, wenn fast alle Elemente einer Menge zur selben Klasse gehören.

Ein klassisches Klassifikationsproblem

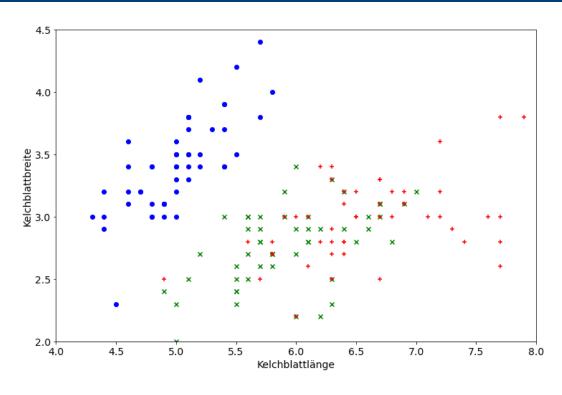
Beispiel: die "Irisdaten"

- Bekannte gemeinfreie Datenbank mit Daten zur Klassifizierung von Schwertlilien: die "Irisdaten"
- Erhältlich z.B. hier https://www.kaggle.com/datasets/arshid/iris-flower-dataset
- Blattlängen und –breiten verschiedener Klassen (Arten) von Schwertlilien:

Iris versicolor

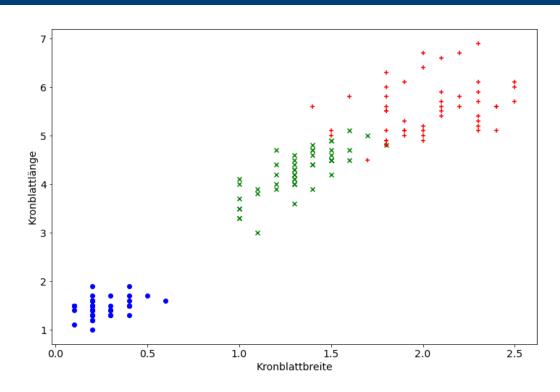
Iris virginica

Kelchblattmaße



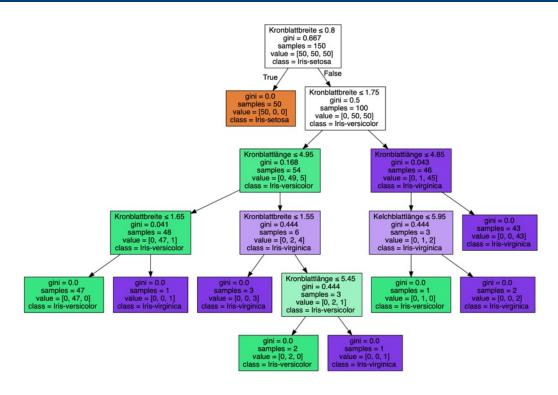
- Setosa
- x Versicolor
- + Virginica

Kronblattmaße

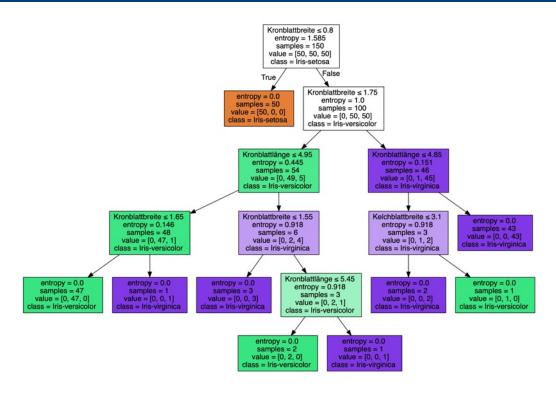


- Setosa
- x Versicolor
- Virginica

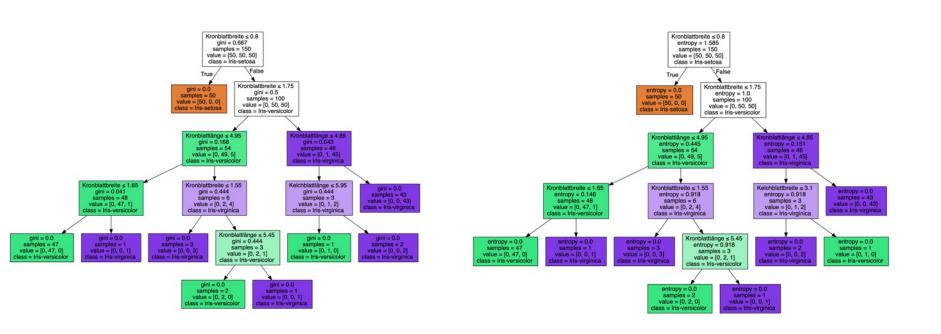
Ein Klassifikationsbaum für Irisarten



Ein Klassifikationsbaum für Irisarten – mit Entropie statt Gini-Index



Die beiden Bäume im Vergleich



Es gibt verschiedene Maße, mit denen man bewerten kann, wie divers die Klassen an den Knoten von Entscheidungsbäumen sind.

Der Gini-Index und die Entropie sind zwei Beispiele für solche Maße.

Dr. Antje Schweitzer

Universität Stuttgart Institut für Maschinelle Sprachverarbeitung

Universität Stuttgart

Institut für Maschinelle Sprachverarbeitung Institut für Software Engineering

Industrie- und Handelskammer Reutlingen

Reutlingen | Tübingen | Zollernalb

Industrie- und Handelskammer

GEFÖRDERT VOM

Quellenverzeichnis

Titelfoto: Iris virginica, von C T Johansson, lizenziert unter CC BY 3.0 https://creativecommons.org/licenses/by/3.0, via Wikimedia Commons, Bildausschnitt verändert

Seite 20, Iris versicolor, von terri bateman, gemeinfrei, via Wikimedia Commons, Bildausschnitt verändert

Seite 20, Iris setosa, von Денис Анисимов, gemeinfrei, via Wikimedia Commons, Bildausschnitt verändert

Seite 20, Iris virginica, von ksandsman, lizenziert unter CC BY 4.0 https://creativecommons.org/licenses/by/4.0>, Bildausschnitt verändert

Lizenzhinweise

"Klassifikationsbäume" von Antje Schweitzer, KI B³ / Uni Stuttgart

Das Werk - mit Ausnahme der folgenden Elemente:

- Logos der Verbundpartner und des Förderprogramms
- im Quellenverzeichnis aufgeführte Medien

ist lizenziert unter:

CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/deed.de)

(Namensnennung 4.0 International)

Bitte beachten Sie auch die Lizenzangaben im Quellenverzeichnis.

Universität Stuttgart

32