Bestimmung eines Dreiecks

aus zwei Winkeln und einer zugehörigen Seitenhalbierenden

Mögliche Kombinationen: (α, β, s_a) , (α, β, s_b) , (α, γ, s_a) , (α, γ, s_c) , (β, γ, s_b) , (β, γ, s_c)

Gegeben:	α, γ, s_c
Gesucht:	a,b,c

Konstruktion:

Strecke [A'C] mit beliebiger Länge

B' liegt

- 1. auf dem freien Schenkel von α , angetragen an [A'C] in A'
- 2. auf dem freien Schenkel von γ , angetragen an [A'C] in C

M' sei der Mittelpunkt von A' und B'.

M liegt

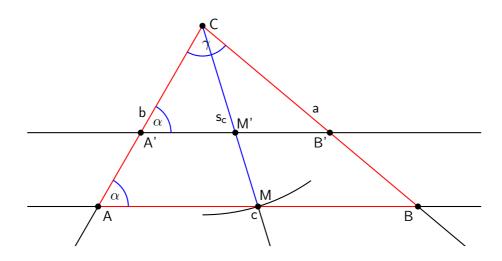
- 1. auf der Geraden CM'
- 2. auf dem Kreis um C mit Radius s_c

A liegt

- 1. auf der Geraden CA'
- 2. auf der Parallelen zu A'B' durch M

B liegt

- 1. auf der Geraden CB'
- 2. auf der Parallelen zu A'B' durch M



Begründung der Konstruktion:

Mithilfe der Winkel α und γ kann ein Hilfsdreieck A'B'C konstruiert werden, das zum gesuchten Dreieck ABC ähnlich ist. [CM'] ist Seitenhalbierende des Hilfsdreiecks. Durch eine geeignete zentrische Streckung mit Zentrum C wird das Hilfsdreieck in ein Dreieck mit den geforderten Eigenschaften überführt.

Rechnung:

Aus den zwei gegebenen Winkelgrößen erhält man unmittelbar die dritte:

$$\beta = 180^{\circ} - \alpha - \gamma$$

Die Seitenlängen a, b und c lassen sich durch den Umkreisradius r und die Winkelgrößen α, β, γ ausdrücken:

$$a = 2r \sin \alpha$$

$$b = 2r \sin \beta$$

$$c = 2r \sin \gamma$$

Aus der Formel für die Seitenhalbierende s_c erhält man durch Einsetzen:

$$s_c = \frac{1}{2}\sqrt{2a^2 + 2b^2 - c^2}$$

$$= \frac{1}{2}\sqrt{8r^2\sin^2\alpha + 8r^2\sin^2\beta - 4r^2\sin^2\gamma}$$

$$= r\sqrt{2\sin^2\alpha + 2\sin^2\beta - \sin^2\gamma}$$

Die letzte Gleichung liefert Rechenausdrücke für den Umkreisradius und die gesuchten Seitenlängen:

$$r = \frac{s_c}{\sqrt{2\sin^2\alpha + 2\sin^2\beta - \sin^2\gamma}}$$

$$a = \frac{2s_c\sin\alpha}{\sqrt{2\sin^2\alpha + 2\sin^2\beta - \sin^2\gamma}}$$

$$b = \frac{2s_c\sin\beta}{\sqrt{2\sin^2\alpha + 2\sin^2\beta - \sin^2\gamma}}$$

$$c = \frac{2s_c\sin\gamma}{\sqrt{2\sin^2\alpha + 2\sin^2\beta - \sin^2\gamma}}$$

Walter Fendt, 26. März 2023